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Abstract. Most readily available landuse/landcover (LULC) data are developed using growing season remote sensing images 15 

often at annual time steps. We used the Dynamic World near real-time global LULC dataset to compare how geospatial 

environmental models of water quality and hydrology respond to growing vs. non-growing season LULC for temperate 

watersheds of the eastern United States. Non-growing season LULC had more built area and less tree cover than growing 

season data due to seasonal impacts on classifications rather than actual LULC changes (e.g., quick construction or succession). 

In mixed-LULC watersheds, seasonal LULC classification inconsistencies could lead to differences in model outputs 20 

depending on the LULC season used, such as an increase in watershed nitrogen yields simulated by the Soil and Water 

Assessment Tool. Within reason, using separate calibration for each season may compensate for these inconsistencies, but lead 

to different model parameter optimizations. Our findings provide guidelines on the use of near real-time and high temporal 

resolution LULC in geospatial models. 

 25 

1 Introduction 

Environmental models incorporating landuse/landcover (LULC) data are common in many fields including 

hydrology, biogeochemistry, ecology, and climate science, often with decision-making implications (Hu et al., 2021; 

Baumgartner and Robinson, 2017; Naha et al., 2021; Li et al., 2021). Studies relating hydrology and water quality to LULC 

often use an LULC dataset developed primarily from growing season data, such as the United States National Landcover 30 

Database (NLCD; Jin et al., 2019) or Cropland Data Layer (CDL; Boryan et al., 2011), and/or use an LULC dataset available 

at an annual time step (Sulla-Menashe and Friedl, 2018; Buchhorn et al., 2020; Gray et al., 2022). Characteristics of LULC 

(e.g., canopy density and precipitation interception) vary seasonally, particularly in temperate regions where vegetation leaf 

cover is reduced during the non-growing season compared to the growing season (van Beusekom et al., 2014). This has 

prompted popular hydrological models such as the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) to include 35 
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seasonal cycles for factors like leaf area and crops (Nkwasa et al., 2020; Frans et al., 2013). However, there can also be temporal 

inconsistencies in LULC classifications due to variation in spectral signals that are often not accounted for, such as built LULC 

being classified as other types within the course of a year, or other classes being classified as trees too quickly for natural 

succession (Cai et al., 2014; Gómez et al., 2016). 

Present day high temporal resolution LULC datasets, such as the global Dynamic World (Brown et al., 2022), can 40 

facilitate the study of non-growing season and near real-time impacts of LULC classifications on environmental models, 

including those of hydrology and water quality. Dynamic World, which has a 10 m spatial resolution at 5-day intervals from 

Sentinel-2 satellites (2A and 2B), has comparable classification accuracy to other LULC datasets including the NLCD, 

European Space Agency World Cover, and ESRI Land Cover data (Venter et al., 2022; Brown et al., 2022), and its 5-day 

temporal resolution is much more frequent than the annual-or-longer frequency of other common LULC datasets. For 45 

environmental research to take advantage of these high temporal resolution data, we need to understand the impacts of potential 

seasonal variation in LULC estimates on geospatial models, which use LULC data to support water resources management 

across the globe (Fu et al., 2019; Guo et al., 2020; Murphy, 2020). 

Worldwide, investigations of LULC impacts to hydrology and water quality often employ regression-based models 

(Fu et al., 2019; Dow and Zampella, 2000), SWAT models simulating LULC change (Ni et al., 2021; Tong et al., 2009), and/or 50 

SWAT model configurations compared objectively to evaluate model performance (Fuka et al., 2012; Li et al., 2019). We used 

the Dynamic World LULC dataset to demonstrate how estimates of LULC can change between the growing and non-growing 

seasons. We then used a long-term United States National Park Service (NPS) water quality dataset for temperate watersheds 

in the eastern United States, along with the above hydrologic and water quality models, to assess the use of seasonal LULC 

data as an input for three modeling cases ranging from low to high complexity. We asked “How different are model outputs 55 

(effect sizes) when using growing vs. non-growing season LULC inputs?” and “Are there differences in calibrated model 

performance if growing vs. non-growing season LULC input is used?”  

2 Materials and Methods 

2.1 Study area and data 

Our study area was 37 current (plus 18 historic) wadeable stream water quality sites monitored by the National Park 60 

Service National Capital Region Network (NCRN), with sites in Maryland, Virginia, West Virginia, and Washington DC, 

USA (Case #1; Figure 1). All sites are in the Chesapeake Bay watershed and were chosen to help inform natural resources 

management (Norris et al., 2011). This includes the 167 km2 Rock Creek Watershed of Rock Creek National Park (Case #2) 

and the 150 km2 Difficult Run Watershed of George Washington Memorial Parkway (Case #3), selected from the above 

watersheds for having continuous calibration and evaluation data.  65 
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Figure 1: Study area map showing active monitoring sites and all (active + historic) watersheds. 

 

Specific conductance (SC) can be used as an indicator of the overall amount of anthropogenic impacts to stream water 70 

quality in a watershed (Dow and Zampella, 2000). SC data from 2005-2018 for our study sites (Norris et al., 2011) were 

downloaded from the Water Quality Portal (https://www.waterqualitydata.us/; accessed 9 October, 2022). Discrete samples 

were taken every one to three months for each site following data quality controls and protocol (Norris et al., 2011), with an 

average of 179±89 measurements per site. Median values over the entire time period were used to compare water quality 

tendencies between monitoring sites (Dow and Zampella, 2000). Model calibration data are described in Sect. 2.5. 75 

2.2 Seasonal landcover comparisons 

We used Google Earth Engine (Gorelick et al., 2017) to generate a different Dynamic World LULC dataset for 

growing season (spring equinox to autumn equinox, 2016) and non-growing season (autumn equinox, 2015 to spring equinox, 

2016) for the monitored watersheds by taking dominant LULC for each pixel over these time periods, following the suggested 

approach (Brown et al., 2022). Thus, there was one composite image for each season (growing and non-growing) that 80 
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represented the most common LULC class for each pixel over the time period of individual images, as developing a SWAT 

model requires the input of one LULC layer. Dynamic World’s built class aggregates both hard structures (e.g., buildings and 

parking lots) and the surrounding vegetation, as is done in other common SWAT LULC inputs such as NLCD developed 

classes (Brown et al., 2022; Jin et al., 2019). We chose the years 2015-2016 because that was the earliest available Dynamic 

World data and nearest to the center of our 2005-2018 time period for water quality data, but repeated the process for every 85 

year of available Dynamic World data (2016-2021) for the Rock Creek and Difficult Run Watersheds to verify there was a 

seasonal cycle throughout years (see below). The timing of the data also aligned with the instance of NLCD data from 2016 

for comparisons.  

2.3 Experimental design 

Different watersheds were tested in each case to demonstrate that the seasonal LULC estimate differences were not 90 

limited to a single watershed (Figure 2). For our water quality regressions (Case #1), we developed linear least-squares 

regression models of median stream SC values over the entire 2005-2018 period for 37 currently monitored NCRN sites 

explained by seasonal Dynamic World 2016 built LULC. The purpose for the water quality regressions case was to evaluate 

how well Dynamic World data could identify an LULC forcing affecting water quality at the watershed scale, following the 

common regression approach used in water quality investigations worldwide (Fu et al., 2019). Performance measures including 95 

Akaike’s Information Criterion (AIC; Akaike, 1974) were used to compare models from different seasons. For the LULC 

change simulation (Case #2), we developed and calibrated SWAT hydrologic and nitrogen (nitrate-N + nitrite-N) yield models 

for the Rock Creek Watershed, then used them to simulate an LULC change between growing and non-growing seasons. The 

purpose for the LULC change simulation case was to evaluate how a model calibrated to one LULC season could respond to 

LULC data from another season, such as when simulating impacts of a watershed LULC change, particularly with regards to 100 

sensitivity to potential illogical LULC transitions in the high temporal frequency data. For the independently calibrated models 

(Case #3), we developed and calibrated SWAT hydrologic models with growing and non-growing season Dynamic World 

2016 inputs independently of one another for the Difficult Run Watershed. The purpose for the independently calibrated 

models case was to assess the performance of seasonally tuned models rather than the single model of the land cover change 

case, to provide fairer comparison of calibrated model performances since each model was optimized to its unique LULC 105 

situation. For each case we repeated the analysis with LULC from the commonly-used NLCD 2016 for comparison.  
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Figure 2: Conceptual diagram of the study. 

2.4 Soil and Water Assessment Tool  

The SWAT models (rev. 681) used in this study simulated streamflow using a water balance approach (Arnold et al., 110 

1998), surface runoff using the runoff curve number (NRCS, 1986), groundwater flow using a water balance for shallow 

aquifer storage (Arnold et al., 1998), snowmelt based on snowpack temperature (Fontaine et al., 2002), and evapotranspiration 

using the Penman-Monteith method (Monteith, 1965; Ritchie, 1972). Nitrogen yields were simulated based on estimates of 

runoff, crop use, lateral flow, percolation, and concentrations in soil and water (Arnold et al., 1998). SWAT divides a watershed 

into spatial subbasins, which may be further divided into unique combinations of soils, landuse, and slopes called Hydrologic 115 

Response Units (HRUs). Subbasins were delineated using the program QSWAT. In the development of the SWAT models, 

one spatial data layer for each of elevation, soils, and LULC (Table S1) was input to generate tables that represent base 

watershed conditions (Abbaspour et al., 2019; Leeper et al., 2015; Lehner et al., 2006; Lindsay, 2022; Sugarbaker et al., 2014; 

USGS, 2022; USDA, 2022; Ries et al., 2017). We created a new SWAT LULC look-up table for QSWAT to read Dynamic 

World data (Table S2). The Rock Creek models for LULC change simulation (Case #2) had 13 subbasins, each assigned the 120 
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dominant HRU, as has been done to more efficiently use computational resources (Myers et al., 2021b; Arabi et al., 2008). 

Gridded 4 km GridMET historic weather inputs were used as the Rock Creek watershed extends over 30 km from north to 

south (Abatzoglou, 2013). The Difficult Run SWAT models (Case #3) had 7 subbasins. Our Difficult Run Watershed SWAT 

models were constructed so that the maximum number of HRUs was incorporated, as has been done to compare independently 

calibrated model performance (Fuka et al., 2012), with weather data from National Oceanic and Atmospheric Administration 125 

(NOAA) station USW00093738 (Table S1). We chose the SWAT model for this study because it can be used to support water 

resource decision making in mixed-LULC watersheds (Koltsida et al., 2023). 

2.5 Sensitivity analysis and calibration 

The Rock Creek models (Case #2) used parameters calibrated with a Latin hypercube approach (to generate a large 

number of potential parameter sets; Abbaspour et al., 2004) to the SWAT model with growing season Dynamic World 2016 130 

inputs, using R-SWAT software (Nguyen et al., 2022). R-SWAT is an open source, graphic interface, parallelizable, and user-

friendly tool to calibrate the SWAT model and analyze results (Nguyen et al., 2022). The parameters optimized during the 

Latin hypercube approach, which had 2,500 iterations, are shown in Table S3. Calibration and evaluation data were complete 

monthly streamflow (n=108 months) and nitrogen (n=10 months) data from the USGS station 01648010 (concentrations 

converted to loads by multiplying by streamflow), split with the first half for calibration and the latter half for evaluation. The 135 

years 2013-2021 were used in the simulations as these were the years the USGS station had been active for streamflow, and 

there was a 3 year model warm-up period (2010-2012) to reduce the influence of initial states. The calibrated parameter set 

was chosen as having the best performing Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) values for streamflow 

and nitrogen yield out of the sample of parameter sets. 

For Case #3, sensitivities of Difficult Run Watershed SWAT model performance to specific parameters were analyzed 140 

using the density-based PAWN method in the Sensitivity Analysis for Everybody (SAFE) toolbox (Pianosi and Wagener, 

2015; Pianosi et al., 2015; Zadeh et al., 2017). Eight thousand SWAT model runs with growing season Dynamic World 2016 

data were used for the sensitivity analysis. We analyzed the sensitivity of 35 parameters and then chose the top 10 parameters 

with sensitivities greater than the dummy parameter to use in the calibration (Table 1 and Figure S1). We then calibrated the 

Difficult Run Watershed SWAT models at the daily time step using the AMALGAM optimization algorithm (Vrugt and 145 

Robinson, 2007) with 3200 iterations and NSE as the objective function (the metric that the algorithm aims to maximize) and 

observed daily streamflow from USGS station 01646000 (with the first half for calibration and latter half for validation; Figure 

S2). In addition to NSE, metrics for Kling-Gupta Efficiency (KGE; Gupta et al., 2009) and refined Index of Agreement (dr; 

Willmott et al., 2012) were calculated to confirm our interpretations, with higher values implying better model performance.  

 150 
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Table 1: Parameters used in SWAT model streamflow calibration for Difficult Run Watershed (Case #3), for models input with growing 

and non-growing season Dynamic World 2016 data, as well as the model with NLCD 2016 input. 

Symbol Definition † Lower 

Limit 

Upper 

Limit 

Calibrated 

Growing 

Calibrated 

Non-growing 

Calibrated 

NLCD 2016 

CH_KII.rte Channel hydraulic 

conductivity (mm/h) (v) 

0.1 150 0.11 3.86 0.14 

ALPHA_BNK.rte Bank flow recession 

constant (v) 

0.01 1 0.14 0.27 1.00 

CN_F.mgt Runoff curve number (r) -0.2 0.2 -0.17 -0.20 -0.08 

SNO50COV.bsn Fraction of SNOCOVMX 

for 50% cover (v) 

0.01 0.8 0.03 0.03 0.25 

ESCO.hru Soil evaporation 

compensation coef. (v) 

0.01 1 0.01 0.03 0.35 

CH_NII.rte Manning's n value for 

main channel (v) 

0.01 0.30 0.30 0.30 0.30 

SOL_BD.sol Soil moist bulk density (r) -0.2 0.2 -0.19 -0.01 0.00 

SNOCOVMX.bsn Snow depth above which 

is 100% cover (mm) (v) 

0 500 471 496 205 

SFTMP.bsn Snowfall temperature 

threshold (°C) (v) 

0 3 0.95 0.98 1.02 

SOL_AWC.sol Available Water Capacity 

(r) 

-0.25 0.25 -0.23 -0.25 -0.23 

† A ‘v’ indicates that the original parameter from QSWAT was replaced by the calibrated value, in the same unit. An ‘r’ 155 

indicates that the original parameter was modified relatively, multiplying it by 1 + the calibrated value (e.g. a value of -0.2 

reduces the original parameter by 20%). 

3 Results and discussion 

3.1 Seasonal landcover comparisons 

The Dynamic World 2016 data classified a greater area of the 55 watersheds as trees during the growing season than 160 

during the non-growing season, typically by 5-10% of watershed area (Figure 3a). During the non-growing season, some areas 

classified as trees during the growing season were instead given built or shrubland LULC classes. Differences in seasonal 

LULC classifications in Dynamic World data were strongest in mixed-LULC watersheds (i.e., watersheds with 15% to 85% 

of the area classified as built LULC), and weaker in very low built or very high built percentage watersheds (R2=0.49, df=52, 

F=24.82, p<0.001; Figure 3b). There was a relative mean absolute difference (RMAD) of 9.0% of watershed area between 165 
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NLCD 2016 developed (including open space, low, medium, and high intensity) and Dynamic World 2016 growing season 

built data (5.9% using non-growing season built data) for the 37 currently monitored watersheds (Figure S3 and Table S4). 

 

 

Figure 3: All using Dynamic World 2016: a) Difference between growing and non-growing season LULC for 55 watersheds (classes of 170 
water, flooded vegetation, barren, and snow/ice were approximately 1% of watershed area so omitted; boxplots show median, interquartile 

range (IQR), and outliers outside 1.5 * IQR), b) Quadratic relationship between built area and the seasonal difference in built area for 55 

watersheds, with 95% confidence intervals as dashed lines, c) and d) Time series of built area estimates for the Rock Creek and Difficult 

Run Watersheds, respectively, and e,f) same as above but for tree area.  
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 175 

The differences between seasons were not limited to a single year of data or watershed. For instance, our study 

watershed for the LULC change simulation (Case #2, Rock Creek) showed a 9% increase in built LULC, and a 12% decrease 

in tree area, in non-growing season relative to growing season Dynamic World data from 2016. Meanwhile, our study 

watershed for the independently calibrated models (Case #3, Difficult Run) showed a 12% decrease in tree cover and a 10% 

increase in built areas in the non-growing season compared to the growing season Dynamic World 2016. Over the entire time 180 

period of available Dynamic World estimates for these watersheds, growing season LULC estimates generally had more tree 

area, while non-growing season had more built area (Figure 3c-f). However, in some years (e.g., 2017-2018) the relationship 

could be reversed, highlighting that further research is needed about the year-to-year variability of seasonal LULC estimates 

and impacts of using different years of seasonal LULC in environmental models.  

Changes in LULC estimates between seasons were often concentrated along forested edges of mixed-LULC areas 185 

(Figure S4). In these deciduous areas, such as the edges of mixed residential/forested zones, leaf cover decreases during the 

non-growing season, which could be exposing other types of LULC underneath, or making forest more difficult to distinguish 

from surrounding built area for the classifications. Actual on-the-ground changes from built LULC to other types, or from 

other LULC types to trees (e.g., succession), are not likely to be occurring within the short (seasonal) time interval between 

our LULC composites (Cai et al., 2014). 190 

3.2 Case #1: Water quality regressions 

Median stream water specific conductance (SC) was positively correlated with 2016 Dynamic World built LULC 

during both seasons (Figure 4; Table 2). This relationship is expected and confirms that urban development has a strong 

positive effect on surface water salinization (Utz et al., 2022; Kaushal et al., 2005). The model for growing season built LULC 

vs. median SC had a slope of 6.41, while the same model for non-growing season LULC had a slope of 6.06, and the AIC’s 195 

for both models were within 1 AIC unit (484 and 483, respectively), which suggests similar performance. For perspective, a 

model created with developed classes from NLCD 2016 had a slope of 6.19 and AIC of 486 (Table 2), with a similar fit as 

both seasonal models (R2 ranging from 0.65-0.68), supporting that Dynamic World could be relevant for identifying LULC 

forcings affecting water quality particularly where regional products such as NLCD are not available. 

 200 

Table 2: Regression models for specific conductance for the growing vs. non-growing seasons of Dynamic World 2016 built data and the 

NLCD 2016 developed classes model (df=35). LCI and UCI: upper and lower 95% confidence intervals of slope. 

LULC Intercept Slope R2 F p-value LCI UCI AIC 

Dyn. World growing season 152.38 6.41 0.67 70.42 <0.001 4.86 7.96 484 

Dyn. World non-growing season 140.31 6.06 0.68 74.97 <0.001 4.64 7.48 483 

NLCD 2016 106.56 6.19 0.65 64.20 <0.001 4.62 7.75 486 
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Figure 4: Modeled median specific conductance (SC) for 37 watersheds comparing Dynamic World 2016 growing and non-growing season 205 
built and NLCD 2016 developed LULC, with 95% confidence intervals as dashed lines. 

3.3 Case #2: Hydrologic and nitrogen yield models  

Our Rock Creek Watershed SWAT model for streamflow and nitrogen yield, developed and calibrated using Dynamic 

World 2016 growing season data, performed with a streamflow calibration NSE of 0.56 (validation NSE of 0.65), nitrogen 

yield calibration NSE of 0.45 (validation NSE of 0.80), and nitrogen yield calibration percent bias (PBIAS, where <0 implies 210 

overestimation bias; Gupta et al., 1999) of 14.6% (validation PBIAS of 1.6%) (Table 3). Therefore, we concluded that the 

model developed with Dynamic World 2016 growing season data was reliably simulating real conditions at the monthly time 

step (Figure 5a,b; red circles). When the calibrated parameter adjustments were transferred to the SWAT model developed 

with non-growing season LULC (as could be done when simulating an actual LULC change), streamflow performance 

decreased by approximately 0.30 NSE units and nitrogen yield PBIAS became -34.4% to -57.4%, implying overestimation of 215 

nitrogen (Table 3; Figure 5a,b; blue circles). Also, the model simulated 50% greater nitrogen yield over the entire 2013-2021 

time period when non-growing season Dynamic World 2016 data was used as the LULC input, rather than growing season 

LULC (Figure 5c). These discrepancies between model outputs are not negligible. In relative terms, this difference is greater 

than the current pollutant load reduction target for Chesapeake Bay of 17% total nitrogen load (Maryland Department of 

Environment, 2019). Therefore, we advise to take the potential seasonal variability of Dynamic World LULC estimates into 220 

consideration if used to design water quality improvement efforts, particularly when decision making is involved, or an LULC 

change is being simulated. A model could be fit to one season of LULC, but have bias if transferred to a different time period 

of LULC estimates due to temporal inconsistencies.  

 

 225 
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Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model (Case #2) for streamflow and nitrogen yield, based on 

Nash Sutcliffe Efficiency (NSE), mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation bias), at the 

monthly time step. 

SWAT LULC input Period Streamflow 

NSE 

N yield 

NSE 

N yield 

MAE (kg) 

N yield 

PBIAS 

Dyn. World 2016 growing 

season 

Calibration 0.65 0.45 713 14.6% 

Dyn. World 2016 growing 

season 

Validation 0.56 0.80 909 1.6% 

Dyn. World 2016 non-

growing season 

Calibration 0.35 -0.53 1177 -34.4% 

Dyn. World 2016 non-

growing season 

Validation 0.21 -2.00 3205 -57.4% 

NLCD 2016 Calibration 0.71 -1.14 1694 -7.8% 

NLCD 2016 Validation 0.85 -0.33 2364 22.1% 

 

 230 

Figure 5: a) Observed vs. simulated monthly discharge for the Rock Creek Watershed comparing Dynamic World 2016 growing and non-

growing season built and NLCD 2016 developed LULC, b) Same for monthly nitrogen (N) yields for Rock Creek, and c) Modeled average 

annual nitrogen yields for Rock Creek. 

 

The differences observed between models using Dynamic World LULC were due to the 9% increase in built areas in 235 

non-growing season Dynamic World 2016 data, which have more impervious surfaces, a higher runoff curve number, and 

generate proportionally more water and nutrient runoff than the forested areas which were classified during the growing season. 

This could be particularly problematic when using computationally more efficient SWAT models that assign subbasin 

conditions based on the dominant HRU, as a change in dominant LULC type in a watershed could result in different subbasin 

conditions in the model greater than the proportional change in LULC. Future work could evaluate how Dynamic World data 240 

influences Earth System Models that spatially aggregate rainfall-runoff over a coarser grid cell and/or without flow routing 

between cells (Clark et al., 2015). For perspective, the nutrient outputs for the SWAT model with Dynamic World 2016 
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growing season LULC were similar to those simulated by the SWAT model with NLCD 2016 LULC input using the same 

parameter adjustments (Figure 5c).  

3.4 Case #3: Independently calibrated hydrologic models 245 

The individually calibrated SWAT models using growing season vs. non-growing season Dynamic World 2016 

LULC input for the Difficult Run Watershed had comparable performance when simulating streamflow, despite the differences 

in LULC inputs (10% increase in built areas and 12% decrease in tree cover for the non-growing season LULC input). NSE 

performance metrics at the daily time step were between 0.52 and 0.54 for each model with Dynamic World LULC over the 

calibration and validation time periods, Kling-Gupta Efficiency (KGE) was between 0.61 and 0.75, and refined Index of 250 

Agreement (dr; which by not squaring errors provides a better measure of low flow performance) only ranged between 0.68 

and 0.70 (Table 4; scatterplots in log scale to show daily baseflows and time series are presented in Figure 6a-d). For 

perspective, the SWAT model calibrated with NLCD 2016 LULC had an NSE of 0.48 for the calibration period and 0.47 over 

the validation period (Table 4).  

 255 

Table 4: Comparison of streamflow performance for calibrated SWAT models developed independently with Dynamic World 2016 growing 

season LULC input, Dynamic World 2016 non-growing season LULC input, and NLCD 2016, at the daily time step for the Difficult Run 

Watershed (Case #3). Performance indices are R2, NSE, Kling-Gupta Efficiency (KGE), and refined Index of Agreement (dr). 

SWAT landuse input Period R2 NSE KGE dr 

Growing season Calibration 0.54 0.53 0.61 0.69 

Non-growing season Calibration 0.54 0.54 0.65 0.70 

NLCD 2016 Calibration 0.49 0.48 0.56 0.69 

Growing season Validation 0.56 0.53 0.73 0.68 

Non-growing season Validation 0.57 0.52 0.75 0.68 

NLCD 2016 Validation 0.53 0.47 0.69 0.68 
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 260 

Figure 6: Daily discharge models for the Difficult Run Watershed displaying base-10 log, so that daily baseflows and low flows are visible, 

comparing independently calibrated models with a) Dynamic World 2016 growing season LULC, b) Dynamic World 2016 non-growing 

season LULC, and c) NLCD 2016. Also d) Time series of Difficult Run modeled discharge. 

 

The most sensitive parameters for the Difficult Run Watershed case were channel hydraulic conductivity (CH_KII), 265 

bank flow recession coefficient (ALPHA_BNK), and runoff curve number (CN_F) (Figure S1). Among these and other 

sensitive parameters, there were differences in optimized values depending upon the SWAT LULC input (Table 1). For 

example, the CN_F adjustment optimized to -0.17 for growing season Dynamic World 2016, -0.20 for non-growing season 

Dynamic World 2016, and -0.08 for NLCD 2016 inputs, suggesting that the optimization adjusted runoff processes to 

compensate for the different proportions of LULC. The difference in forests of 12% of watershed area between growing and 270 

non-growing season Dynamic World 2016 data for Difficult Run (Table S4) is as large a difference as real changes in forests 

that have been found to cause these sensitivities in model parameters (Li et al., 2019), but was likely caused by classification 

variation rather than an actual cycle from trees to built area and back (Hermosilla et al., 2018). It is critical to consider that the 

differences in parameter values create the potential for the models to respond differently to future changes in LULC or climate 

change due to variations in unmeasured water balance outputs (Myers et al., 2021a).  275 
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4 Conclusions 

When seasonal changes in LULC data occur, due to classification difficulties such as vegetation cycles (e.g., 

deciduous leaf cover in mixed-LULC areas), hydrologic and water quality models developed using growing season LULC 

inputs could behave differently from those using non-growing season LULC (Figure 7), with meaningful differences for 

environmental efforts such as pollutant load reduction targets. The cause in temperate watersheds is primarily a sensitivity to 280 

changes from built to forest LULC proportions that affect modeled runoff and nutrient yields, representing temporal 

classification inconsistencies rather than actual succession or restoration (Cai et al., 2014; Hermosilla et al., 2018). 

Environmental and geospatial researchers should be aware of this sensitivity when developing models and assessing changes 

in LULC as they relate to water quantity and quality, especially when considering the use of different seasons of available 

Dynamic World LULC data in a model. The seasonal variation in Dynamic World LULC data we identified is pertinent for 285 

environmental models of future climates, biodiversity, habitat loss, land management, ecology, and biogeochemistry that are 

dependent on precise assessments of LULC change that could be affected by the seasonal classification variation (Hu et al., 

2021; Baumgartner and Robinson, 2017; Yang et al., 2022; Di Vittorio et al., 2018). With a limited geographic scope (e.g., 

temperate watersheds) and small sample of models, our work does not intend to show definitively when, where, or in what 

model configurations these sensitivities would occur, but that they are a possibility that modelers should be aware of, and 290 

supports that further research is needed. 

 

 

Figure 7: Conceptual diagram of the conclusions of the study in temperate watersheds of the eastern United States. 

 295 

Future research building on our findings could investigate: 
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1. How seasonal LULC classification inconsistencies could affect assessments of habitat, biodiversity, land 

management, ecology, and future climate based on LULC change,  

2. How seasonal LULC classification inconsistencies influence models outside our temperate study area (e.g., 

mountainous, arid, tropical, high-latitude, savannah, Mediterranean, continental), 300 

3. The use of high-frequency monitoring data (Zhang et al., 2023) to investigate the influence of high temporal resolution 

LULC on water quality patterns, 

4. Whether a modification to environmental models such as time varying parameters (Li et al., 2019) could account for 

the seasonal differences in Dynamic World LULC classifications,  

5. The incorporation of LULC pixel probabilities from the Dynamic World dataset (Brown et al., 2022; Small and Sousa, 305 

2023) into environmental models,  

6. Post-processing approaches for high temporal resolution LULC products to address seasonal inconsistencies (Sexton 

et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018), 

7. Which seasons of LULC data are most accurate for different purposes, such as vegetation or impervious surface 

classification, 310 

8. Whether near real-time LULC data could be used in LULC change models (e.g., Hood et al., 2021) to improve the 

temporal precision of interpolations between discrete LULC images, and 

9. To what extent year-to-year inconsistencies in seasonal LULC estimates could affect environmental models 

simulating LULC change over years. 

Code and data availability 315 

Data from this study, including the LULC images, water quality data, and model outputs from each case, are available 

from Mendeley Data at https://doi.org/10.17632/bbb9xbpv22.3 (Myers et al., 2022). Codes from this study, including Google 

Earth Engine scripts and those to reproduce figures and analyses, are available on GitHub at 

https://github.com/Danmyers901/Calibration/tree/master/Landcover. 
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